
The Linguistic Knowledge Builder (LKB)

Fabiola Henri

Department of English/Linguistics Program
University of Kentucky
fabiola.henri@uky.edu

LINCD Session 3
February 2014

Henri (UK) Feb 28th , 2014 1 / 43

fabiola.henri@uky.edu

Introduction

The Linguistic Knowledge Builder (LKB) is a specialized grammar
engineering environment for contraint-based grammars

+ Specifically designed for typed feature structures (TFS)

Originally developed by Ann Copestake and later by John Carroll, Rob
Malouf, and Stefan Oepen

Requires little knowledge of computers

Although LKB is an open-source that runs on different operating
systems, the use of Linux is recommended

Henri (UK) Feb 28th , 2014 2 / 43

Introduction

1. Extensive efficiency improvements, so the system is capable of parsing
reasonable length sentences with a large grammar.

2. Default unification is based on YADU, defined in Lascarides and
Copestake (1999).

3. Automatic computation of greatest lower bounds in the type
hierarchy.

4. Integration with the [incr tsdb()]6 test suite machinery (Oepen and
Flickinger, 1998).

5. Integration with MRS semantics (Copestake et al, 1999).

6. Tactical generation from MRS input (relatively experimental).

7. Many new user interface features.
Henri (UK) Feb 28th , 2014 3 / 43

A word on Grammar Engineering

Natural language grammars are implemented in many softwares

Used for both parsing and generation

Precision grammar: requires fully explicit analyses (vs general
approaches to syntax)

Henri (UK) Feb 28th , 2014 4 / 43

Applications

Language documentation

Linguistic hypothesis testing

Computer assisted language learning

Machine translation

. . .

Henri (UK) Feb 28th , 2014 5 / 43

Goals of LINCD Session

Familiarize ourselves with the LKB platform

Investigate the implementation of constraints in morphology, syntax,
and semantics within HPSG

Henri (UK) Feb 28th , 2014 6 / 43

A tour of the LKB system

Outline

A tour of the LKB system

TFS

An indepth examination

Extending the grammar

The Matrix

Readings

Henri (UK) Feb 28th , 2014 7 / 43

A tour of the LKB system

LKB grammar files

Types and constraints (types.tdl)

Lexical entries (lexicon.tdl)

Grammar rules (rules.tdl)

Lexical and morphological rules (lrules.tdl and irules.tdl)

Auxiliary settings

script which loads various files in the grammar
globals.lsp which contains global settings

Henri (UK) Feb 28th , 2014 8 / 43

A tour of the LKB system

A first session

Open a web-serv session via Putty (Advanced Syntax folder)

+ Xming should be loaded before hand

You should find in your directory a lkb-data folder

Open emacs

Run LKB: M-x lkb RET

An Xming window (LKB Top) should pop up! YAY!

Henri (UK) Feb 28th , 2014 9 / 43

A tour of the LKB system

A first session

Figure: The LKB interaction window or LKB top menu

Henri (UK) Feb 28th , 2014 10 / 43

A tour of the LKB system

Loading a grammar

The LKB comes with a series of grammars

+ a set of files containing types and constraints, lexical entries, grammar
rules, etc

The sample grammar: lkb-data/itfs/g8gap

Select Complete grammar from the LKB Load menu, and choose the
script file from g8gap the directory

Henri (UK) Feb 28th , 2014 11 / 43

A tour of the LKB system

Loading a grammar

Figure: Selecting the script file

Henri (UK) Feb 28th , 2014 12 / 43

A tour of the LKB system

Loading a grammar

Once a file is successfully loaded, the menu commands are all
available and a type hierarchy window is displayed

Henri (UK) Feb 28th , 2014 13 / 43

A tour of the LKB system

Loading a grammar

Figure: Loading a grammar

Henri (UK) Feb 28th , 2014 14 / 43

A tour of the LKB system

Loading a grammar

Figure: Type hierarchy window

Henri (UK) Feb 28th , 2014 15 / 43

A tour of the LKB system

Parsing

Select “Parse | Parse input . . .” from the LKB Top menu and parse
the sentence that appears in the dialogue

Henri (UK) Feb 28th , 2014 16 / 43

TFS

Outline

A tour of the LKB system

TFS

An indepth examination

Extending the grammar

The Matrix

Readings

Henri (UK) Feb 28th , 2014 17 / 43

TFS

Feature structures and type constraints

The LKB grammar is a type system with constraints expressed as
feature structures

+ The most general type displayed at the left of the window *top*

+ Some types has more than one parent (multiple inheritance)

To inspect the constraint on the type *ne-list* (non-empty list),
select Expanded Type from the menu

+ It has two features, FIRST and REST

+ The value of FIRST is *top*: it can unify with any feature structure
+ The value of REST is *list*: it can only unify with the type *list*

or one of its subtypes

Henri (UK) Feb 28th , 2014 18 / 43

TFS

Feature structures and type constraints

The entry for the type *ne-list* is found in the source file
g8gap/types.tdl

+ Open the file in emacs

Figure 3.6: A complex type constraint

Look at the entry for the type ne-list in the actual source file toy/types.tdl (i.e., open that
file in emacs, if you are running the ACL/CLIM version of the LKB, or in the MCL editor, if you
are running the MCL version).

ne-list := *list* &
[FIRST *top*,
REST *list*].

The syntax of the language in which the type and its constraint are defined (the description lan-
guage) is detailed in §5.3.1. The type definition obligatorily specifies the parent or parents of a
type (in this case, *list*) and optionally gives a constraint definition. In this particular case, the
constraint described in the file corresponds very closely to the expanded constraint shown in the
feature structure window, because the only parent of ne-list is *list* and this does not have any
features in its constraint. However, in general, type constraints inherit a lot of information from the
ancestors of the type so the description of a constraint is very compact compared to the expanded
constraint.

To see a more complicated type constraint, click on grule (grammar rule) in the type hierarchy
window (found via feat-struc, synsem-struc, phrase from *top*) and again choose Expanded
Type. The feature structure window is shown in Figure 3.6. grule illustrates that types can have
complex constraints: that is the value of a feature in a constraint can be a feature structure. Look
at the definition of grule in the source file:

grule := phrase &
[ARGS *list*].

In contrast to ne-list, the constraint on grule has inherited a lot of information from types higher
in the hierarchy: you can see how this inheritance operates by looking at the constraints of grule’s
ancestors in the type hierarchy window.

You will find that you can click on the types within the feature structures to get menus and also
on the description at the top of the window (e.g., grule - expanded). Details of the menu
options in feature structure windows are given in §7.3. More details of the type hierarchy window,
including an explanation of all the commands, are given in §7.2.

26

Henri (UK) Feb 28th , 2014 19 / 43

TFS

Feature structures and type constraints

The syntax of the language in which the type and its constraint are
defined is called The Description Language

The type definition obligatorily specifies the parent or parents of a
type and optionally defines a constraint

+ Here *list* (the parent) does not have any feature in its constraint

+ But type constraints can inherit a lot of information from the parent,
allowing for a compact description

Inspect a more complicated type constraint like phrase

Henri (UK) Feb 28th , 2014 20 / 43

TFS

Feature structures and type constraints

Figure: TFS window for phrase
Henri (UK) Feb 28th , 2014 21 / 43

TFS

Feature structures and type constraints

The value of a feature in a constraint can be a TFS

The notation < > is a shorthand for *null*

Henri (UK) Feb 28th , 2014 22 / 43

TFS

The view command

The view commands allows you to look at entities such as lexical
entries

Select View from the LKB top menu and then select Word entries

Enter dog when prompted for a word (any entry from lexicon.tdl);
OK

Identifiers can be added to provide unique lexical entries in case of
multiple entries with identical spelling (dog 1)

The PHON feature in HPSG = ORTH in LKB

dlist = allows for concatenation of lists

Henri (UK) Feb 28th , 2014 23 / 43

TFS

The view command

Grammar rules can also be viewed by clicking on View Grammar rule

Try for instance head-specifier-rule

It is possible to shrink/expand to view parts of the structure

+ The mother is the TFS as a whole while the daughters are the list

value of the feature ARGS

Henri (UK) Feb 28th , 2014 24 / 43

An indepth examination

Outline

A tour of the LKB system

TFS

An indepth examination

Extending the grammar

The Matrix

Readings

Henri (UK) Feb 28th , 2014 25 / 43

An indepth examination

Parsing sentences

Figure: Parsing trees

Clicking on the tree provides a menu with the option Show enlarged

tree

Click on the top node and choose Feature structure - Edge 11

The printed TFS is an instantiation of the head-specifier-rule

Henri (UK) Feb 28th , 2014 26 / 43

An indepth examination

Parsing sentences

The top node = root node

The structure for the NP the dog is the value of the path ARGS.FIRST

The structure for the verb barks is the value of the path
ARGS.FIRST.REST

More later on how the grammar rules works cf. parse-nodes.tdl

Henri (UK) Feb 28th , 2014 27 / 43

An indepth examination

Morphological and lexical rules

The tree has 2 V nodes (above and below barks)

This is an application of a morphological rule

+ Morphological rules are used for inflectional and derivational processes
with affixation

+ Lexical rules for processes with no affixation

In lexicon.tdl > the entry for bark

In inflr.tdl> the rule for 3SG generates the inflected form barks

Henri (UK) Feb 28th , 2014 28 / 43

An indepth examination

Morphological and lexical rules

View > lex entry for bark

You will be prompted for Lex-id> bark > bark - expanded

Then choose Apply all lex rule

Figure: Lexical rules

Clicking on the nodes will display the feature structures corresponding
to the nodes

Henri (UK) Feb 28th , 2014 29 / 43

An indepth examination

Batch Parse

Try Parse > Batch Parse

Choose test.items when prompted to choose a file

The test suite file is basically the coverage of the grammar

Enter a name, for e.g test.results as the output file; the system
will parse all the sentences in the file

Open your test.results file in emacs

Henri (UK) Feb 28th , 2014 30 / 43

An indepth examination

Batch Parse

The data in your test.results file will show:

1. The sentence itself
2. The number of the sentence
3. The number of parses
4. the number of passive edges (a passive edge is a phrase that the

system constructs while attemting to parse a sentence)

In the test suite file, ungrammatical sentences are marked with an
asterisk but this is stripped out by the system when it is parsed

I Total parsing time is also reported for all sentences

Henri (UK) Feb 28th , 2014 31 / 43

An indepth examination

Semantic Representation

Parse The dog chased the cat
Choose Indexed MRS > Semantic representation of the sentence
MRS (Minimal Recursion Semantics) is a semantic representation
language that can be converted into for eg. predicate calculus

Figure: MRS representation

Henri (UK) Feb 28th , 2014 32 / 43

An indepth examination

Semantic Representation

The semantic is in fact also a TFS; it is the value of SEMANTICS in
the parsed sentence

The option Indexed MRS more readable

The option MRS has a representation closer to a TFS

Other options: Prolog MRS > Suitable for Prolog systems

Other options: Scoped MRS > Requires a full representation of
quantifiers

Henri (UK) Feb 28th , 2014 33 / 43

An indepth examination

Semantic Representation

Figure: TFS MRS representation

Henri (UK) Feb 28th , 2014 34 / 43

An indepth examination

Generating Sentences

The LKB allows generation of grammatical sentences

Click and choose the option Generate on the tree

It is also possible to generate form the MRS representation

+ Input version of the sentences and other inflected forms of that same
sentence

Try to parse an ambiguous sentence

+ The dog chased the cat near the aardvark

+ The grammar can sometimes generate ungrammatical sentences
(overgeneration)

Henri (UK) Feb 28th , 2014 35 / 43

Extending the grammar

Outline

A tour of the LKB system

TFS

An indepth examination

Extending the grammar

The Matrix

Readings

Henri (UK) Feb 28th , 2014 36 / 43

Extending the grammar

Adding a lexical entry

Open the file lexicon.tdl

Suppose you want to add another noun: squirrel

Change the orthography and value of the semantic feature

the “” around the values specify that these are proper values

Save the file, and then select Load followed by Reload grammar

Try to parse The cat chased the squirrel

Henri (UK) Feb 28th , 2014 37 / 43

Extending the grammar

Adding a type with a constraint description

Consider pair nouns like scissors, binoculars, pants, trousers

They always show plural agreement

Precision grammar: Attributing them the type noun-lxm would
predict that they would have both singular and plural forms

Make a new type which says that the number agreement is always
plural

Henri (UK) Feb 28th , 2014 38 / 43

Extending the grammar

Adding a type with a constraint description

Open types.tdl > look for the type description noun-lxm

Add a new type pair-noun-lxm that would inherit from noun-lxm

that specifies a vlaue pl for the feature HEAD.NUMAGR

Save and reload grammar > Check the type hierarchy!

Add a new entry to lexicon.tdl

try to parse new sentences and generate new ones!

Henri (UK) Feb 28th , 2014 39 / 43

The Matrix

Outline

A tour of the LKB system

TFS

An indepth examination

Extending the grammar

The Matrix

Readings

Henri (UK) Feb 28th , 2014 40 / 43

The Matrix

Grammar Customization

The LinGO Grammar Matrix aloow you to build up an implemented
grammar for a language of your choice

Developed by Emily Bender et al. at the University of Washington

Provides a starter grammar with a language-independent core and
customized support (your input)

http://www.delph-in.net/matrix/customize/matrix.cgi

Henri (UK) Feb 28th , 2014 41 / 43

The Matrix

Grammar Customization: tdl files

matrix.tdl: Supertypes for lex-rules, which handle the copying up
of everything youre not changing

my language.tdl: Position classes and lex rule types defined
through the customization system; features for inside INFLECTED

lrules.tdl: Instances for non-spelling-changing lex rules (zero
morphemes)

irules.tdl: Instances for spelling-changing lex rules

Henri (UK) Feb 28th , 2014 42 / 43

Readings

Copestake, A. (2002). Implementing Typed Feature Structure Grammars. CSLI lecture notes. C S L I Publications/Center for
the Study of Language & Information.

Pollard, C. and Sag, I. (1994). Head-Driven Phrase Structure Grammar. Studies in Contemporary Linguistics. University of
Chicago Press.

Sag, I. A., Wasow, T., and Bender, E. (2003). Syntactic Theory: A Formal Introduction. Stanford: Center for the Study of
Language and Information, 2nd edn.

Henri (UK) Feb 28th , 2014 43 / 43

	A tour of the LKB system
	TFS
	An indepth examination
	Extending the grammar
	The Matrix
	Readings

